Except for the historical information contained herein, certain matters in this presentation including, but not limited to, statements as to: our growth and growth drivers; trends and our opportunities in existing and new markets; AI-fueled applications supercharging the exponential growth in demand for computation; AI computational intensity growing super-exponentially; the next wave of AI and data centers; our cash dividend and repurchase program; our strategies; the rising adoption of NVIDIA RTX; the performance, specifications, benefits, impact and availability of our products and technologies, including NVIDIA HPC, NVIDIA AI, NVIDIA Omniverse, NVIDIA cuNumeric, NVIDIA CV-CUDA, NVIDIA cuQuantum, NVIDIA Parabricks, NVIDIA Sionna, NVIDIA JetPack, NVIDIA RAPIDS, NVIDIA Spark, NVIDIA cuDNN, NVIDIA cuGraph, NVIDIA TensorRT, NVIDIA Triton, NVIDIA DeepStream, NVIDIA Flare, NVIDIA DOCA, NVIDIA Mag IO, NVIDIA Aerial, NVIDIA RTX, NVIDIA DGX, NVIDIA HGX, NVIDIA EGX, NVIDIA OVV, NVIDIA Super POD, NVIDIA AGX, NVIDIA GPUs, NVIDIA CPUs, NVIDIA DPU, GeForce GPU, GeForce NOW, Quadro, Ada Lovelace, Hopper GPU, Grace CPU, Bluefield DPU, Omniverse Enterprise SW, Orin SOC, Base Command, Fleet Command, TAO, Enterprise TensorFlow/PyTorch, Triton Inference Server, NVIDIA IGX, MLPerf, H100 GPU, NVIDIA Turing, NVIDIA Ampere Architecture, NVIDIA DRIVE products including the AI Cockpit and Autonomous Vehicles platform, Thor Superchip, RT Core, Tensor Core, NVIDIA AI Enterprise Software, NVIDIA One Architecture, NVIDIA Nemo LLM, NVIDIA BioNemo and Transformer architecture; optimizing across the entire stack allowing NVIDIA to advance computing in the post-Moore’s law era; our partnerships, collaborations, and customers; upcoming launches of our products and architectures; and Ada Lovelace paving the way for fully simulated worlds are forward-looking statements.

These forward-looking statements and any other forward-looking statements that go beyond historical facts that are made in this presentation are subject to risks and uncertainties that may cause actual results to differ materially. Important factors that could cause actual results to differ materially include: global economic conditions; our reliance on third parties to manufacture, assemble, package and test our products; the impact of technological developments and competition; development of new products and technologies or enhancements to our existing product and technologies; market acceptance of our products or our partners’ products; design, manufacturing or software defects; changes in consumer preferences and demands; changes in industry standards and interfaces; unexpected loss of our products or technologies when integrated into systems and other factors.

NVIDIA has based these forward-looking statements largely on its current expectations and projections about future events and trends that it believes may affect its financial condition, results of operations, business strategy, short-term and long-term business operations and objectives, and financial needs. These forward-looking statements are subject to a number of risks and uncertainties, and you should not rely upon the forward-looking statements as predictions of future events. The future events and trends discussed in this presentation may not occur and actual results could differ materially and adversely from those anticipated or implied in the forward-looking statements. Although NVIDIA believes that the expectations reflected in the forward-looking statements are reasonable, the company cannot guarantee that future results, levels of activity, performance, achievements or events and circumstances reflected in the forward-looking statements will occur. Except as required by law, NVIDIA disclaims any obligation to update these forward-looking statements to reflect future events or circumstances. For a complete discussion of factors that could materially affect our financial results and operations, please refer to the reports we file from time to time with the SEC, including our most recent Annual Report on Form 10-K, Quarterly Reports on Form 10-Q, and Current Reports on Form 8-K. Copies of reports we file with the SEC are posted on our website and are available from NVIDIA without charge.

NVIDIA uses certain non-GAAP measures in this presentation including non-GAAP gross profit, non-GAAP gross margin, non-GAAP operating income, non-GAAP operating margin, and free cash flow. NVIDIA believes the presentation of its non-GAAP financial measures enhances investors’ overall understanding of the company’s historical financial performance. The presentation of the company’s non-GAAP financial measures is not meant to be considered in isolation or as a substitute for the company’s financial results prepared in accordance with GAAP, and the company’s non-GAAP measures may be different from non-GAAP measures used by other companies. Further information relevant to the interpretation of non-GAAP financial measures, and reconciliations of these non-GAAP financial measures to the most comparable GAAP measures, may be found in the slide titled “Reconciliation of Non-GAAP to GAAP Financial Measures”.
NVIDIA pioneered accelerated computing to help solve impactful challenges classical computers cannot. A quarter of a century in the making, NVIDIA accelerated computing is broadly recognized as the way to advance computing as Moore’s law ends and AI lifts off.

NVIDIA’s platform is installed in several hundred million computers, is available in every cloud and from every server maker, powers 357 of the TOP500 supercomputers, and boasts over 3.5 million developers.

Headquarters: Santa Clara, CA | ~25,000 Employees
What Is Accelerated Computing?
A full-stack approach: silicon, systems, software

Not just a superfast chip – accelerated computing is a full-stack combination of:
• Chip(s) with specialized processors
• Algorithms in acceleration libraries
• Domain experts to refactor applications
To speed-up compute-intensive parts of an application.

Amdahl’s law:
The overall system speed-up (S) gained by optimizing a single part of a system by a factor (s) is limited by the proportion of execution time of that part (p).

\[S = \frac{1}{(1 - p) + \frac{p}{s}} \]

For example:
• If 90% of the runtime can be accelerated by 100x, the application is sped up 9x
• If 99% of the runtime can be accelerated by 100x, the application is sped up 50x
• If 80% of the runtime can be accelerated by 500x, or even 1000x, the application is sped up 5x
Why Accelerated Computing?
Advancing computing in the post-Moore's Law era

Accelerated computing is needed to tackle the most impactful opportunities of our time — like AI, climate simulation, drug discovery, ray tracing, and robotics.

NVIDIA is uniquely dedicated to accelerated computing — working top-to-bottom — refactoring applications and creating new algorithms, and bottom-to-top — inventing new specialized processors, like RT Core and Tensor Core.

“It’s the end of Moore’s Law as we know it.”
- John Hennessy Oct 23, 2018

“Moore’s Law is dead.”
- Jensen Huang, GTC 2013
AI has fundamentally changed what software can make and how you make software.

Companies are processing & refining their data, making AI software – becoming intelligence manufacturers. Their data centers are AI factories.

The first wave of AI learned perception and inference, like recognizing images, understanding speech, recommending a video, or an item to buy.

The next wave of AI is robotics – AI planning actions. Digital robots, avatars, and physical robots will perceive, plan and act.

NVIDIA’s acceleration stacks and ecosystems help bring AI to the world’s largest industries.

NVIDIA’s world-class AI expertise and scale can help revolutionize businesses.
NVIDIA Omniverse is a software platform for building and operating metaverse applications.

Our initial focus is on industrial metaverses, such as digital twins used to emulate the behavior of products or factories in the physical world.

Omniverse uses a real-time, large-scale 3D database that connects to 3D worlds via the USD (Universal Scene Descriptor) framework. Just as the internet connects websites over HTML, Omniverse connects 3D worlds over USD.

Omniverse is essential for the next wave of AI -- robotics -- where AI interacts with the physical world.

Applications built to run on Omniverse are like portals into the Omniverse virtual world.
With nearly three decades of a singular focus, NVIDIA is expert at accelerating software and scaling compute by a Million-X, going well beyond Moore’s law.

Accelerated computing is a full-stack challenge, demanding deep understanding of the problem domain, optimizing across every layer of computing, and all three chips – GPU, CPU, and DPU.

Scaling across multi-GPUs and multi-nodes is a datacenter-scale challenge and requires treating the network and storage as part of the computing fabric.

Our platform extends from PCs to supercomputing centers, enterprise data centers, cloud and edge environments.
NVIDIA’s Multi-Sided Platform and Flywheel

NVIDIA is valued by every stakeholder in the ecosystem:

• **For developers** – NVIDIA’s One Architecture and large installed base give developer’s software the best performance and greatest reach

• **For computer makers and CSPs** – NVIDIA’s rich suite of Acceleration Platforms lets partners build one offering to address large markets including media & entertainment, healthcare, transportation, energy, financial services, manufacturing, retail, and more

• **For customers** – NVIDIA is offered by virtually every computing provider and accelerates the most impactful applications from cloud to edge

• **For NVIDIA** – Deep engagement with developers, computing providers, and customers in diverse industries enables unmatched expertise, scale, and speed of innovation across the entire accelerated computing stack – propelling the flywheel
Full-Stack & Data Center Scale Acceleration
Drive Significant Cost Savings and Workload Scaling

Classical Computing – 92 CPU-only servers
$3.3M (including, switches, cables, racks)

Accelerated Computing – 1 NVIDIA DGX A100
$220,000 DGX and $100,000 NVIDIA AI software

10X lower cost
14X better energy-efficiency

Application
Re-Engineered for Acceleration
CUDA-X Acceleration Libraries
Magnum IO

Cost comparison example based on latest available NVIDIA A100 GPU and Intel CPU inference results in the commercially available category of the MLPerf industry benchmark; includes related infrastructure costs such as networking.
New NVIDIA Software and Services

Enabling the World's Enterprises to Revolutionize Industries with AI

<table>
<thead>
<tr>
<th>NVIDIA AI Enterprise</th>
<th>NVIDIA Omniverse</th>
<th>NVIDIA Nemo LLM</th>
<th>NVIDIA BioNemo</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operating engine of AI for end-to-end data-driven software development.</td>
<td>A platform for designing, building, and operating 3D and virtual world simulations.</td>
<td>NVIDIA-hosted cloud service for training Large Language Models to perform specific tasks – e.g., summarize legal documents, write marketing copy, analyze market sentiment, chatbot to support customers, search documents, write and document code, paraphrase.</td>
<td>NVIDIA-hosted cloud service for training and deploying large biomolecular models that understand the language of chemistry, proteins, RNA, and DNA.</td>
</tr>
<tr>
<td>One engine license accelerates end-to-end modern AI and data science.</td>
<td>Consists of a virtual world engine, USD connectors, and portals browsing the virtual world simulation. Omniverse is an enterprise application that connects architects, designers, hardware and software engineers, marketers, to supply-chain and factory planners.</td>
<td>Nemo can help thousands of companies, train language AI's to do hundreds of tasks, in 10's of languages.</td>
<td>BioNemo can help researchers, biotech, and pharma companies to process chemical and biological datasets to accelerate drug discovery.</td>
</tr>
<tr>
<td>Per GPU On-Prem Subscription</td>
<td>Per Connection On-Prem Subscription</td>
<td>Per GPU On-Prem Subscription</td>
<td>Per GPU On-Prem Subscription</td>
</tr>
<tr>
<td>Per GPU-HR Cloud Consumption</td>
<td>Per GPU-HR Cloud Consumption</td>
<td>Per GPU-HR Cloud Consumption</td>
<td>Per GPU-HR Cloud Consumption</td>
</tr>
</tbody>
</table>
Giant Market Opportunity

<table>
<thead>
<tr>
<th>Sector</th>
<th>Market Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaming & Metaverse</td>
<td>$100B</td>
</tr>
<tr>
<td>Financial Services</td>
<td>$150B</td>
</tr>
<tr>
<td>Healthcare</td>
<td>$150B</td>
</tr>
<tr>
<td>Logistics</td>
<td>$300B</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>$300B</td>
</tr>
<tr>
<td>Retail</td>
<td>$300B</td>
</tr>
<tr>
<td>Transportation</td>
<td>$300B</td>
</tr>
<tr>
<td>Total</td>
<td>$1 Trillion</td>
</tr>
</tbody>
</table>

Gaming
Over 3B gamers and creators, a quarter of them spending over $100/year for GPUs in desktops, laptops, cloud or consoles

NVIDIA AI Enterprise Software
50M enterprise server installed base; per-server, per-year subscription price

Omniverse Enterprise Software
Over 45M designers and creators; 10s of millions of digital twins – per-user/digital twin, per-year subscription price

Chips and Systems
~20M servers/year – GPUs, CPUs, DPUs, NICs, switches

Automotive
100M vehicles/year hardware opportunity; 100s of millions of AV vehicles installed base software opportunity

$1 Trillion Opportunity

<table>
<thead>
<tr>
<th>Sector</th>
<th>Market Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaming</td>
<td>$150B</td>
</tr>
<tr>
<td>NVDAI AI ENTERPRISE SOFTWARE</td>
<td>$150B</td>
</tr>
<tr>
<td>Omniverse Enterprise Software</td>
<td>$150B</td>
</tr>
<tr>
<td>Chips & Systems</td>
<td>$300B</td>
</tr>
<tr>
<td>Automotive</td>
<td>$300B</td>
</tr>
</tbody>
</table>
Driving Strong & Profitable Growth

<table>
<thead>
<tr>
<th>Fiscal Year</th>
<th>Revenue ($M)</th>
<th>Operating Profit (Non-GAAP)</th>
<th>Operating Margin (Non-GAAP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2018</td>
<td>$9,714</td>
<td>$3,617</td>
<td>37%</td>
</tr>
<tr>
<td>FY 2019</td>
<td>$11,716</td>
<td>$4,407</td>
<td>38%</td>
</tr>
<tr>
<td>FY 2020</td>
<td>$10,918</td>
<td>$3,735</td>
<td>34%</td>
</tr>
<tr>
<td>FY 2021</td>
<td>$16,675</td>
<td>$6,603</td>
<td>41%</td>
</tr>
<tr>
<td>FY 2022</td>
<td>$26,914</td>
<td>$12,690</td>
<td>47%</td>
</tr>
<tr>
<td>FY 2023</td>
<td>$14,992</td>
<td>$5,280</td>
<td>35%</td>
</tr>
</tbody>
</table>

Fiscal year ends in January. Refer to Appendix for reconciliation of Non-GAAP measures. Operating margins rounded to the nearest percent.

1H FY23 financial metrics reflect a Gaming channel inventory correction and a $1.2B charge for inventory and related reserves.
Accelerated computing requires full-stack and data center-scale innovation across silicon, systems, algorithms and applications.

Significant expertise and effort are required, but application speed-ups can be incredible, resulting in dramatic cost and time-to-solution savings.

For example, 10 NVIDIA HGX nodes with 80 NVIDIA A100 GPUs that cost $4M can replace 920 nodes of CPU servers that cost over $50M for AI inference.

NVIDIA chips carry the value of the full-stack, not just the chip.

Gross Profit (Non-GAAP) and Gross Margin (Non-GAAP) for fiscal years FY 2018 to FY 2023. Cost comparison example based on latest available NVIDIA A100 GPU and Intel CPU inference results in the commercially available category of the MLPerf industry benchmark; includes related infrastructure costs such as networking.

FY 23 financial metrics reflect a Gaming channel inventory correction and a $1.2B charge for inventory and related reserves. Fiscal year ends in January. Refer to Appendix for reconciliation of Non-GAAP measures. Gross margins are rounded to the nearest percent.
Strong Cash Flow Generation

Free Cash Flow (Non-GAAP)

- FY 2018: $2.9B
- FY 2019: $3.1B
- FY 2020: $4.3B
- FY 2021: $4.7B
- FY 2022: $8.0B
- FY 2023: $2.2B

Capital Allocation

Share Repurchase
Resumed Buybacks in Q1 FY 2023
$5.3B repurchased in 1H FY23; ~$12B Remaining
Authorization Through Dec 2023 as of Aug 2023

Dividend
$400M in FY 2022
Plan to Maintain

Strategic Investments
Growing Our Talent,
Platform Reach & Ecosystem

Fiscal year ends in January. Refer to Appendix for reconciliation of Non-GAAP measures.
Our Market Platforms at a Glance

Gaming
46% of FY22 revenue
FY22 Revenue $12.5B
5-yr CAGR 25%
GeForce GPUs for PC gaming
GeForce NOW cloud gaming

Data Center
40% of FY22 revenue
FY22 Revenue $10.6B
5-yr CAGR 66%
DGX/HGX/EGX/IGX systems
GPU | CPU | DPU | Networking
NVIDIA AI software

Professional Visualization
8% of FY22 revenue
FY22 Revenue $2.1B
5-yr CAGR 20%
Quadro/NVIDIA RTX GPUs for workstations
Omniverse software

Automotive
2% of FY22 revenue
FY22 Revenue $0.6B
5-yr CAGR 3%
DRIVE Hyperion sensor architecture with AGX compute
DRIVE AV & IX full stack software for ADAS, AV & AI cockpit
Data Center
The leading computing platform for AI, HPC & graphics

Leader in AI & HPC
#1 in AI training and inference
Used by all hyperscale & major cloud computing providers and 35,000 organizations
Powers 357 of the TOP500 supercomputers

Growth Drivers
Rapid AI adoption across industries
Rising computation requirements for modern AI
Three chip strategy – GPU | CPU | DPU
Data-center scale innovation
Full-stack AI | Software
Omniverse
Data Center
Strong growth fueled by AI performance leadership and huge developer ecosystem

- CUDA Downloads: 4.5X in 4 Yrs
- # of Developers: 3.5X in 4 Yrs
- Accelerated Applications: 5X in 4 Yrs

Accelerating Adoption with Every Architecture

- Hyperscale Revenue:
 - P100
 - V100
 - A100
 - Note: Cumulative Revenue 8Q After Launch

- #1 in AI Training & Inference Performance
 - 2015 K80: 36,000 Mins (25 Days)
 - 2017 V100: 480 Mins (8 Hours)
 - 2021 A100: 24 Seconds

The Largest Accelerated Computing Ecosystem

- Note: Cumulative Revenue 8Q After Launch
Modern AI is a Data Center Scale Computing Workload

Data centers are becoming AI factories: data as input, intelligence as output

Large Language Models, based on the Transformer architecture, are one of today's most important advanced AI technologies, involving up to trillions of parameters that learn from text.

Developing them is an expensive, time-consuming process that demands deep technical expertise, distributed data center-scale infrastructure, and a full-stack accelerated computing approach.
Wave of New Data Center Products
Ramping new architectures for GPU, CPU and DPU

H100 GPU
- World’s Most Advanced Chip
- 80B Transistors
- Transformer Engine – 6X Perf
- Confidential Computing
- 4th Gen NVLink – 7X PCIe Gen5

2H FY23

Bluefield-3 DPU
- First 400 Gb/s DPU
- Line-rate processing of software-defined networking, storage, and cybersecurity
- VMware vSphere 8 integration
- Zero-trust security
- ~600 infrastructure software partners

1H FY23

Grace CPU Superchip
- High Performance CPU for HPC and AI
- 144 Cores | 740 SPECrate’2017_int_base est.
- 1TB/s Memory Bandwidth
- 2X Perf/Watt Over Traditional Servers
- VMware vSphere 8 integration
- Zero-trust security
- ~600 infrastructure software partners
- Runs NVIDIA Computing Stacks

1H FY24
Gaming
GeForce — the world’s largest gaming platform

Leader in PC Gaming
Strong #1 market position with over 80% share
15 of the Top 15 most popular GPUs on Steam
Leading performance & innovation
200M+ gamers on GeForce

Growth Drivers
Rising adoption of NVIDIA RTX
Expanding universe of gamers & creators
Gaming laptops & game consoles
GeForce NOW Cloud gaming

Revenue ($M)

25% 5-YR CAGR

FY 2018 $5,513
FY 2019 $6,246
FY 2020 $5,518
FY 2021 $7,759
FY 2022 $12,462
FY 2023 $5,662

FY 1H FY 1H
Strong Gaming Fundamentals

- **New generation, more gamers**
 - Boomers: 42%
 - Gen X: 60%
 - Millennials: 77%
 - Gen Z: 81%
 - Hrs/Wk: 2:30, 4:25, 6:50, 7:20

- **Expanding universe of gamers and creators**
 - PC Gamers: 2.3B
 - Total Gamers: 3.1B
 - Expanding reach to 110M Creators & Broadcasters

- **Robust NVIDIA ecosystem**
 - 340+ RTX Games and Applications
 - #1 Video App
 - #1 Photo App
 - #1 3D App
 - #1 Broadcast App

Source: NewZoo and NVIDIA internal analysis
The Next Generation: Ada Lovelace
A quantum leap for gamers | Paves the way for fully simulated worlds

A Giant Leap in Processing Throughput and Energy Efficiency – up to 4x faster, and over 2x the performance at the same power

Shipping in October
Professional Visualization
Workstation graphics

Revenue ($M)

<table>
<thead>
<tr>
<th>Year</th>
<th>FY 2018</th>
<th>FY 2019</th>
<th>FY 2020</th>
<th>FY 2021</th>
<th>FY 2022</th>
<th>FY 2023</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenue</td>
<td>$934</td>
<td>$1,130</td>
<td>$1,212</td>
<td>$1,053</td>
<td>$2,111</td>
<td>$1,118</td>
</tr>
</tbody>
</table>

20% 5-YR CAGR

Leader in Workstation Graphics
90%+ market share in graphics for workstations
45M Designers and Creators
Strong software ecosystem with over 70 supported applications

Growth Drivers
Ray Tracing and AI revolutionizing design
Expanding universe of designers and creators
Collaborative 3D design / Omniverse
Hybrid work environments
Automotive

Autonomous Vehicles (AV) & AI Cockpit

Revenue ($M)

Our next billion-dollar business
Over $11B design win pipeline across 40 customers

Leadership Position in All Segments

<table>
<thead>
<tr>
<th>20 of 30</th>
<th>7 of 10</th>
<th>8 of 10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Passenger EV</td>
<td>Trucking</td>
<td>Robotaxi</td>
</tr>
</tbody>
</table>

Revenue Growth Drivers:
- Adoption of centralized car computing and software-defined vehicle architectures
- AV software and services:
 - Mercedes Benz FY2025 SOP*
 - Jaguar Land Rover FY2026 SOP

*SOP = Start of Production

Leader in Autonomous Driving

Historical revenue driven largely by infotainment
Future growth primarily fueled by NVIDIA DRIVE, our AV and AI cockpit platform with full software stack
Over $11B design win pipeline through FY2028 based on DRIVE Orin, which started ramp in FY2023
Next-generation DRIVE Thor to ramp in FY2025
Summary

Accelerated Computing Essential for the Next Era – AI | Graphics | Simulation

NVIDIA Innovates at Data Center Scale – GPU | CPU | DPU | Full Stack

New Software & Services – NVIDIA AI | Omniverse | Nemo LLM | BioNemo LLM

Wave of New Chips – Ada Lovelace | Hopper | Grace | Orin

Strong Revenue, Operating Profit & Cash Flow Growth

$1T Market Opportunity
Reconciliation of Non-GAAP to GAAP Financial Measures
Reconciliation of Non-GAAP to GAAP Financial Measures

<table>
<thead>
<tr>
<th></th>
<th>Gross Margin ($ in Millions & Margin Percentage)</th>
<th>Non-GAAP</th>
<th>Acquisition-Related and Other Costs (A)</th>
<th>Stock-Based Compensation (B)</th>
<th>IP-Related Costs</th>
<th>GAAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2018</td>
<td>$5,844</td>
<td>—</td>
<td>(21)</td>
<td>(1)</td>
<td></td>
<td>$5,822</td>
</tr>
<tr>
<td></td>
<td>60.2%</td>
<td>—</td>
<td>(0.3)</td>
<td>—</td>
<td></td>
<td>59.9%</td>
</tr>
<tr>
<td>FY 2019</td>
<td>$7,233</td>
<td>—</td>
<td>(27)</td>
<td>(35)</td>
<td></td>
<td>$7,171</td>
</tr>
<tr>
<td></td>
<td>61.7%</td>
<td>—</td>
<td>(0.2)</td>
<td>(0.3)</td>
<td></td>
<td>61.2%</td>
</tr>
<tr>
<td>FY 2020</td>
<td>$6,821</td>
<td>—</td>
<td>(39)</td>
<td>(14)</td>
<td></td>
<td>$6,768</td>
</tr>
<tr>
<td></td>
<td>62.5%</td>
<td>—</td>
<td>(0.4)</td>
<td>(0.1)</td>
<td></td>
<td>62.0%</td>
</tr>
<tr>
<td>FY 2021</td>
<td>$10,947</td>
<td>(425)</td>
<td>(88)</td>
<td>(38)</td>
<td></td>
<td>$10,396</td>
</tr>
<tr>
<td></td>
<td>65.6%</td>
<td>(2.6)</td>
<td>(0.5)</td>
<td>(0.2)</td>
<td></td>
<td>62.3%</td>
</tr>
<tr>
<td>FY 2022</td>
<td>$17,969</td>
<td>(344)</td>
<td>(141)</td>
<td>(9)</td>
<td></td>
<td>$17,475</td>
</tr>
<tr>
<td></td>
<td>66.8%</td>
<td>(1.4)</td>
<td>(0.5)</td>
<td>—</td>
<td></td>
<td>64.9%</td>
</tr>
<tr>
<td>1H FY22</td>
<td>$8,083</td>
<td>(173)</td>
<td>(57)</td>
<td>(9)</td>
<td></td>
<td>$7,844</td>
</tr>
<tr>
<td></td>
<td>66.4%</td>
<td>(1.3)</td>
<td>(0.5)</td>
<td>(0.1)</td>
<td></td>
<td>64.5%</td>
</tr>
<tr>
<td>1H FY23</td>
<td>$8,636</td>
<td>(214)</td>
<td>(76)</td>
<td>—</td>
<td></td>
<td>$8,346</td>
</tr>
<tr>
<td></td>
<td>57.6%</td>
<td>(1.4)</td>
<td>(0.5)</td>
<td>—</td>
<td></td>
<td>55.7%</td>
</tr>
</tbody>
</table>

A. Consists of amortization of intangible assets and inventory step-up
B. Stock-based compensation charge was allocated to cost of goods sold
Reconciliation of Non-GAAP to GAAP Financial Measures (contd.)

<table>
<thead>
<tr>
<th>Operating Margin ($ in Millions & Margin Percentage)</th>
<th>Non-GAAP</th>
<th>Acquisition Termination Cost</th>
<th>Acquisition-Related and Other Costs (A)</th>
<th>Stock-Based Compensation (B)</th>
<th>Other (3)</th>
<th>GAAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2018</td>
<td>$3,617</td>
<td>—</td>
<td>(13)</td>
<td>(391)</td>
<td>(3)</td>
<td>$3,210</td>
</tr>
<tr>
<td></td>
<td>37.2%</td>
<td>—</td>
<td>(0.2)</td>
<td>(4.0)</td>
<td>—</td>
<td>33.0%</td>
</tr>
<tr>
<td>FY 2019</td>
<td>$4,407</td>
<td>—</td>
<td>(2)</td>
<td>(557)</td>
<td>(44)</td>
<td>$3,804</td>
</tr>
<tr>
<td></td>
<td>37.6%</td>
<td>—</td>
<td>—</td>
<td>(4.7)</td>
<td>(0.4)</td>
<td>32.5%</td>
</tr>
<tr>
<td>FY 2020</td>
<td>$3,735</td>
<td>—</td>
<td>(31)</td>
<td>(844)</td>
<td>(14)</td>
<td>$2,846</td>
</tr>
<tr>
<td></td>
<td>34.2%</td>
<td>—</td>
<td>(0.3)</td>
<td>(7.7)</td>
<td>(0.1)</td>
<td>26.1%</td>
</tr>
<tr>
<td>FY 2021</td>
<td>$6,803</td>
<td>—</td>
<td>(836)</td>
<td>(1,397)</td>
<td>(38)</td>
<td>$4,532</td>
</tr>
<tr>
<td></td>
<td>40.8%</td>
<td>—</td>
<td>(5.0)</td>
<td>(8.4)</td>
<td>(0.2)</td>
<td>27.2%</td>
</tr>
<tr>
<td>FY 2022</td>
<td>$12,690</td>
<td>—</td>
<td>(636)</td>
<td>(2,004)</td>
<td>(9)</td>
<td>$10,041</td>
</tr>
<tr>
<td></td>
<td>47.2%</td>
<td>—</td>
<td>(2.5)</td>
<td>(7.4)</td>
<td>—</td>
<td>37.3%</td>
</tr>
<tr>
<td>1H FY22</td>
<td>$5,628</td>
<td>—</td>
<td>(325)</td>
<td>(894)</td>
<td>(9)</td>
<td>$4,400</td>
</tr>
<tr>
<td></td>
<td>46.3%</td>
<td>—</td>
<td>(2.7)</td>
<td>(7.3)</td>
<td>(0.1)</td>
<td>36.2%</td>
</tr>
<tr>
<td>1H FY23</td>
<td>$5,280</td>
<td>(1,353)</td>
<td>(324)</td>
<td>(1,227)</td>
<td>(9)</td>
<td>$2,367</td>
</tr>
<tr>
<td></td>
<td>35.2%</td>
<td>(9.0)</td>
<td>(2.2)</td>
<td>(8.2)</td>
<td>—</td>
<td>15.8%</td>
</tr>
</tbody>
</table>

A. Consists of amortization of acquisition-related intangible assets, inventory step-up, transaction costs, compensation charges, and other costs
B. Stock-based compensation charge was allocated to cost of goods sold, research and development expense, and sales, general and administrative expense
C. Comprises of IP-related costs, legal settlement costs, and contributions
Reconciliation of Non-GAAP to GAAP Financial Measures (contd.)

<table>
<thead>
<tr>
<th>($ in Millions)</th>
<th>Free Cash Flow</th>
<th>Purchases Related to Property and Equipment and Intangible Assets</th>
<th>Principal Payments on Property and Equipment</th>
<th>Net Cash Provided by Operating Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2018</td>
<td>$2,909</td>
<td>593</td>
<td>—</td>
<td>$3,502</td>
</tr>
<tr>
<td>FY 2019</td>
<td>$3,143</td>
<td>600</td>
<td>—</td>
<td>$3,743</td>
</tr>
<tr>
<td>FY 2020</td>
<td>$4,272</td>
<td>489</td>
<td>—</td>
<td>$4,761</td>
</tr>
<tr>
<td>FY 2021</td>
<td>$4,677</td>
<td>1,128</td>
<td>17</td>
<td>$5,822</td>
</tr>
<tr>
<td>FY 2022</td>
<td>$8,049</td>
<td>976</td>
<td>83</td>
<td>$9,108</td>
</tr>
<tr>
<td>1H FY 2022</td>
<td>$4,035</td>
<td>481</td>
<td>40</td>
<td>$4,556</td>
</tr>
<tr>
<td>1H FY 2023</td>
<td>$2,171</td>
<td>794</td>
<td>36</td>
<td>$3,001</td>
</tr>
</tbody>
</table>