Patients with metastatic pancreatic cancer who have progressed on two or more lines of therapy have a poor prognosis with a median overall survival (OS) of 2–2.5 months.1 Currently, there are no FDA-approved treatments specifically indicated for third-line metastatic pancreatic adenocarcinoma (PDAC) patients. Neither ASCO nor NCCN guidelines recommend any treatment for third-line pancreatic cancer patients. SM-88 (D,L-alpha-metrosine; racemetrosine [USAN]) is an oral proprietary dysfunctional tyrosine kinase inhibitor that is well-tolerated with only 4% of patients with pancreatic cancer (2/49) experiencing serious adverse events (SAEs) that were deemed at least possibly drug related. There are no FDA-approved therapies specific for third-line metastatic pancreatic cancer. SM-88 used with MPS monotherapy was tolerated with improvement in survival in patients who achieved Stable Disease or better (Clinical Benefit Rate) and subsequently achieved at least stable disease on therapy (HR 0.59, 95% CI 0.33, 1.04, P = 0.073). There was a trend toward longer overall survival (OS) in patients who achieved clinical benefit rate and subsequently achieved at least stable disease on therapy (HR 0.61, 95% CI 0.33–1.12, P = 0.12). Based on these results, SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median overall survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 Panc Part 1 study. This included a median Overall Survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 and MPS are approved treatments specific for third-line metastatic pancreatic cancer.2,3,4 Based on these results, SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median overall survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 used with MPS also demonstrated encouraging clinical data in advanced pancreatic cancer in TYME-88-Panc Part 1. In that study, it was shown that SM-88 used with MPS monotherapy was relatively well-tolerated with improvement in survival in patients with heavily pretreated PDAC who achieved at least stable disease on therapy (HR 0.38, p = 0.02). Circulating tumor cells (CTCs) were prognostic and decreased on therapy with SM-88 used with MPS, potentially identifying a subgroup of PDAC patients who may be most likely to benefit from therapy.3,4 SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median Overall Survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 used with MPS also demonstrated encouraging clinical data in advanced pancreatic cancer in TYME-88-Panc Part 1. In that study, it was shown that SM-88 used with MPS monotherapy was relatively well-tolerated with improvement in survival in patients with heavily pretreated PDAC who achieved at least stable disease on therapy (HR 0.38, p = 0.02). Circulating tumor cells (CTCs) were prognostic and decreased on therapy with SM-88 used with MPS, potentially identifying a subgroup of PDAC patients who may be most likely to benefit from therapy.3,4 SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median Overall Survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 used with MPS also demonstrated encouraging clinical data in advanced pancreatic cancer in TYME-88-Panc Part 1. In that study, it was shown that SM-88 used with MPS monotherapy was relatively well-tolerated with improvement in survival in patients with heavily pretreated PDAC who achieved at least stable disease on therapy (HR 0.38, p = 0.02). Circulating tumor cells (CTCs) were prognostic and decreased on therapy with SM-88 used with MPS, potentially identifying a subgroup of PDAC patients who may be most likely to benefit from therapy.3,4 SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median Overall Survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 used with MPS also demonstrated encouraging clinical data in advanced pancreatic cancer in TYME-88-Panc Part 1. In that study, it was shown that SM-88 used with MPS monotherapy was relatively well-tolerated with improvement in survival in patients with heavily pretreated PDAC who achieved at least stable disease on therapy (HR 0.38, p = 0.02). Circulating tumor cells (CTCs) were prognostic and decreased on therapy with SM-88 used with MPS, potentially identifying a subgroup of PDAC patients who may be most likely to benefit from therapy.3,4 SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median Overall Survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 used with MPS also demonstrated encouraging clinical data in advanced pancreatic cancer in TYME-88-Panc Part 1. In that study, it was shown that SM-88 used with MPS monotherapy was relatively well-tolerated with improvement in survival in patients with heavily pretreated PDAC who achieved at least stable disease on therapy (HR 0.38, p = 0.02). Circulating tumor cells (CTCs) were prognostic and decreased on therapy with SM-88 used with MPS, potentially identifying a subgroup of PDAC patients who may be most likely to benefit from therapy.3,4 SM-88 demonstrated encouraging efficacy in Part 1 of the TYME-88 study. This included a median Overall Survival of 6.4 months in the evaluable patients. There was also a statistically significant correlation between those patients who achieved Stable Disease or better (Clinical Benefit Rate) and longer overall survival. SM-88 is the lead investigational therapy in the TYME Cancer Metabolism-Based Therapies (CMBTs) platform and is hypothesized to disrupt cancer cell metabolism. Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 Previous studies demonstrated confirmed responses across 15 tumor types, as well as a well-tolerated safety profile.2,3,4 SM-88 used with MPS also demonstrated encouraging clinical data in advanced pancreatic cancer in TYME-88-Panc Part 1. In that study, it was shown that SM-88 used with MPS monotherapy was relatively well-tolerated with improvement in survival in patients with heavily pretreated PDAC who achieved at least stable disease on therapy (HR 0.38, p = 0.02). Circulating tumor cells (CTCs) were prognostic and decreased on therapy with SM-88 used with MPS, potentially identifying a subgroup of PDAC patients who may be most likely to benefit from therapy.3,4