Taking Immunotherapy to the Next Level

J. Joseph Kim, Ph.D.
President & CEO

December 2017
Forward Looking Statement

Our commentary and responses to your questions may contain forward-looking statements, including comments concerning clinical trials and product development programs, evaluation of potential opportunities, the level of corporate expenditures, the assessment of Inovio’s technology by potential corporate partners, capital market conditions, timing of events, cash consumption, and other information concerning factors that could cause actual results to differ materially from those set forth in our Annual Report on Form 10-K for the year ended December 31, 2016, our Form 10-Q for the period ended September 30, 2017, and other regulatory filings from time to time.
Leading the Development of DNA-based Immunotherapies to Commercialization

- **Powerful platform, multiple product candidates**
- **Phase 3 enrolling; Four additional immunotherapy trials with efficacy endpoints**
- **Efficacy demonstrated in phase 2b study**
- **Partnerships and collaborations: MedImmune, Regeneron and Genentech**

Our purpose:

Develop immunotherapies and vaccines to fight cancers and infectious diseases
Immune Responses by Design

Optimized platform: SynCon® + CELLECTRA®

- SynCon® antigen genetic code enables precise targeting of cancer or pathogen
- Designed to break tolerance and cover mutating strains
- Highly optimized SynCon plasmid + novel CELLECTRA delivery generate optimal antigen production IN THE BODY
- Activates robust functional CD8+ killer T cell and antibody responses
- Phase 2b data published
- Favorable safety profile in over 1,500 subjects and 4,000 immunizations
- Significant antigen-specific immune responses in almost 1,000 patients and counting
Inovio Product Pipeline

<table>
<thead>
<tr>
<th>Product</th>
<th>Indication</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Milestone</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGX-3100</td>
<td>Cervical Dysplasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated P3 2Q17</td>
</tr>
<tr>
<td></td>
<td>Vulvar Neoplasia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated P2 2Q17</td>
</tr>
<tr>
<td></td>
<td>Bladder Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated P1/2 checkpoint combo study 4Q17</td>
</tr>
<tr>
<td>INO-5401</td>
<td>Glioblastoma Multiforme</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Report data 3Q17 Candidate for Out-licensing</td>
</tr>
<tr>
<td>INO-5150</td>
<td>Prostate Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Report data 4Q17</td>
</tr>
<tr>
<td>INO-1400</td>
<td>hTERT (Multiple Solid Tumors)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Report data 1Q18 Candidate for Out-licensing Post-data</td>
</tr>
<tr>
<td>INO-1800</td>
<td>Hepatitis B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Initiated P1/2 checkpoint combo study 2Q17</td>
</tr>
<tr>
<td>MEDI0457</td>
<td>Head & Neck Cancer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **PARTNER FUNDED**
- **INTERNALLY FUNDED**

Partners:
- Genentech
- Regeneron
- MedImmune
VGX-3100: Fulfills Unmet Treatment Needs of HPV-Related Precancers

VGX-3100 is indicated for the treatment of the following precancerous diseases caused by HPV types 16 and 18:
- High grade Cervical Dysplasia
- High grade Vulvar Dysplasia
- High-grade Anal Dysplasia

- **First-in-class HPV-specific immunotherapy**
- **Targets the major underlying cause of anogenital cancer**
- **Treats pre-cancer without invasive surgery**

Annual Incidence (HPV 16/18+ Precancers)

<table>
<thead>
<tr>
<th>Disease</th>
<th>US</th>
<th>EU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical</td>
<td>195,000</td>
<td>233,000</td>
</tr>
<tr>
<td>Vulvar</td>
<td>23,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Anal</td>
<td>13,400</td>
<td>2,514</td>
</tr>
</tbody>
</table>
HPV Caused Pre-Cancers: Limitations of Surgery

Loss of Reproductive Health

Pain

Surgical Complications

Negative Psychosocial Impact

Cervical

10% - 16%

Recurrence of CIN2/3 after LEEP

23.5%

HPV-16 DNA detected in patients after LEEP

Vulvar

>50%

Recurrence post-surgery with clean margins

Anal

40-50%

Recurrence post-surgery

HPV-Related Cervical HSIL Phase 3 Program

VGX-3100 has the potential to be the first treatment for HPV infection of the cervix and the first non-surgical treatment for pre-cancerous cervical lesions.

- VGX-3100: Targets HPV 16/18 subtypes; E6/E7 oncogenes
- Treats high-grade squamous intraepithelial lesions (HSIL)
- Consists of two studies in parallel:
 - REVEAL I (primary) n=198
 - REVEAL II (confirmatory) n=198
- Randomized (2:1), double-blind, placebo-controlled
- Dosing: month 0, 1, 3 (as in P2b)
- Primary endpoint: month 9 (as in P2b)
- REVEAL1: Study follow-up through week 88 (as in P2b)
- REVEAL 2: Study follow-up through week 40
- Report data from both studies in 2020

Primary Endpoint
- Regression of HSIL (CIN2/3) AND clearance of HPV 16/18 in the cervix

Secondary Endpoints
- Safety/tolerability
- Regression of HSIL
- Virologic clearance of HPV-16 and/or HPV-18
- Non-progression to cancer
- Clearance of HPV from non-cervical anatomic locations
Phase 2b Study Primary and Secondary Efficacy Endpoints Met

- Efficacy correlates to immune responses
- PP and mITT p-values equal
- 167 subjects
- Paper published in *The Lancet* September 2015
- \(^1\)Strata-adjusted

Cervical HSIL regression to low or normal AND HPV clearance

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Percentage</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGX-3100</td>
<td>40.2%</td>
<td>(p=0.001)</td>
</tr>
<tr>
<td>Control</td>
<td>14.3%</td>
<td></td>
</tr>
<tr>
<td>Difference</td>
<td>25.9%</td>
<td></td>
</tr>
</tbody>
</table>

T Cell Responses Measured in Blood

- Treatment at wks 0, 4, & 12
- *Statistically significant; bars are 95% CI

T Cell Responses Measured in Tissue

- Regression of CIN3 & HPV to normal
- Increase and persistent presence of infiltrating CD8+ killer T cells

\(^*\)Statistically significant; bars are 95% CI
Rationale for Combinations in Immuno-Oncology: Turning “Cold” Tumors to “Hot” Tumors

Tumor infiltration of antigen-specific, functional CD8+ T cells may prime patients for treatment with checkpoint inhibitors and increase response rates.

- **Checkpoints combined with Inovio cancer vaccines**
 - Increase anti-tumor benefit, without adding toxicity
 - Clinical studies planned for 2017
 - MEDI0457 with MedImmune
 - INO-5401 with Regeneron and Genentech

- **Checkpoint combinations**
 - Improved response rates
 - Significantly increased toxicity & discontinuations

- **Checkpoint monotherapies**
 - Durable anti-tumor benefit
 - Low response rates; ~20% in most tumors
Immuno-Oncology Studies with Efficacy Endpoints

MEDI0457 (licensed out to MedImmune)
- Metastatic HPV-related squamous cell carcinoma of the head & neck (SCCHN) with persistent or recurrent disease after chemotherapy treatment.
- Combination with *durvalumab (IMFINZI™)* PD-L1 checkpoint inhibitor
- Phase 1/2 open label study: safety, immunological impact, objective response rate, progression-free survival and overall survival
- ~ 50 subjects. Enrolling.

INO-5401 (combination of 3 tumor-associated antigens: hTERT, PSMA, WT1)
- Advanced unresectable or metastatic urothelial carcinoma (**bladder cancer**)
- Combination with *atezolizumab (TECENTRIQ®)* PD-L1 checkpoint inhibitor
- Phase 1b/2 open-label trial: safety, immune response and clinical efficacy
- ~ 80 patients; ~ 60 will be PD-1/PD-L1 refractory patients. Enrolling.

INO-5401
- Newly diagnosed *glioblastoma multiforme* (GBM)
- Combination with *REGN2810* PD-1 checkpoint inhibitor
- Phase 1b/2a open label trial: safety, tolerability, immunological impact, progression-free survival and overall survival
- ~ 50 patients. Enrolling.
MEDI0457: Turning “Cold” Tumors to “Hot” Tumors in Phase 1

Before treatment with MEDI0457

Control: FoxP3

After treatment with MEDI0457

CD8

“Cold”

“Hot”
Platform Development Programs: Global Health Vaccines

Safety and Immunogenicity of an Anti–Zika Virus DNA Vaccine — Preliminary Report

Pablo Tebas, M.D., Christine C. Roberts, Ph.D., Kar Muthumani, Ph.D., Emma L. Reuschel, Ph.D., Sagar B. Kudchodkar, Ph.D., Faraz I. Zaidi, M.S., Scott White, M.D., Amir S. Khan, Ph.D., Trina Racine, Ph.D., Hyeree Choi, B.S., Jean Boyer, Ph.D., Young K. Park, J.D., Sylvie Trottier, M.D., Celine Remigio, D.P.T., R.N., Diane Krieger, M.D., Susan E. Spruill, M.S., Mark Bagarazzi, M.D., Gary P. Kobinger, Ph.D., David B. Weiner, Ph.D., and Joel N. Maslow, M.D., Ph.D.

- Concept to 1st patient dosed in ~6 months.
- Only vaccine with clinical data – 100% antibody response rates
Positive Clinical Immune Response Data from Studies in Healthy Volunteers: Emerging Infectious Diseases

MERS (GLS-5300) – Phase 1
- High levels of binding antibodies measured (ELISA) in 92% (57 of 62) of evaluated subjects
- Antigen-specific cytotoxic T-lymphocyte (CTL) responses observed
 - 98% (61 of 62) generated an antibody and/or T cell response against MERS

Ebola (INO-4201) – Phase 1
- High levels of binding antibodies measured (ELISA) in 95% (170 of 179) of evaluated subjects
- T cell immune responses are being evaluated

HIV (PENNAX-GP) – Phase 1
- Overall, 93% (71 of 76) evaluable vaccinated participants showed a CD4+ or CD8+ cellular immune response to at least one of the vaccine antigens (env A, env C, gag, or pol)
- Similarly, 94% (62 of 66) evaluated participants demonstrated an env specific antibody response
- None of the placebo recipients (0%; 0 of 9) demonstrated either a cellular or an antibody response in the study

Zika (GLS-5700) – Phase 1
- High levels of binding antibodies measured (ELISA) in 100% (39 of 39) of evaluated subjects
- T cell immune responses are being evaluated
2017 Value Drivers and Milestones

- **2Q17:** VGX-3100 HSIL P3 & VIN P2 studies initiated
- **2H17:** Advance INO-5401 bladder cancer and GBM programs with checkpoint inhibitor to P1/P2
- **4Q17:** Report INO-1400 (hTERT) interim immune response and safety data
- **2Q17:** MEDI0457 checkpoint inhibitor combo P1/P2 trial initiated
- **3Q17:** Report INO-5150 (prostate) immune response and safety data (interim)
- **4Q17:** Publish Zika, Ebola, MERS phase 1 immune response and safety data
2018-2019 Value Drivers and Milestones

1Q18: Report INO-1800 HBV immune response and safety data (interim)

2018: Report on interim P1/2 data on MEDI0457 study

2019: Report on interim P1/2 data from Bladder INO-5401 study

2018: Initiate VGX-3100 AIN P2 study

2019: Report on interim P1/2 data from GBM INO-5401 study

2018: Report on Zika vaccine Puerto Rico study

2019: Report on interim P1/2 MERS vaccine Korea study data
Management & Financials
Senior Management

J. Joseph Kim, PhD
President & CEO

- Decades of biotechnology/pharma management
- Merck: hepatitis A and B vaccines manufacturing; HIV vaccine (Ad5) R&D

Peter Kies
CFO

- Ernst & Young
- Experience with growth companies

Niranjan Y. Sardesai, PhD; COO

- Extensive biotech management and product development experience
- Led diagnostics development for mesothelioma, bladder cancer, and ovarian cancer for Fujirebio Diagnostics

Mark L. Bagarazzi, MD
CMO

- Clinical research experience incl. Merck
- Led clinical/regulatory for shingles and rotavirus vaccines; DNA vaccine expert
Board of Directors

Avtar Dhillon, MD
Chairman, BOD
• Seasoned venture capitalist and biotech entrepreneur

Simon X. Benito
• Former Senior Vice President, Merck Vaccine Division

George Bickerstaff
• Partner, M.M. Dillon & Co.
• Former CFO, Novartis Pharma AG

Angel Cabrera, PhD
• President, George Mason University

Morton Collins, PhD
• General Partner, Battelle Ventures and Innovations Valley Partners

J. Joseph Kim, PhD
• President & CEO, Inovio

Adel Mahmoud, PhD
• Professor, Princeton Univ.
• Former President, Merck Vaccines
• Responsible for Gardasil®, Zostavax®, Proquad® and Rotateq®

David B. Weiner, PhD
• Executive VP, The Wistar Institute; Director, Vaccine Center
Scientific Advisory Board

David B. Weiner, PhD
Chairman

- “Father of DNA vaccines”
- Executive VP, The Wistar Institute; Director, Vaccine Center

Anthony W. Ford-Hutchinson, PhD

- Former SVP, Vaccines R&D, Merck
- Oversaw development: Singulair®, Januvia®, Gardasil®, Zostavax®, Proquad® and Rotateq®

Stanley A. Plotkin, MD

- Developed rubella and rabies vaccines
- Oversaw Sanofi flu vaccine
- Emeritus Professor, Wistar Institute & University of Pennsylvania
Financial Information

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recent share price</td>
<td>$4.38</td>
</tr>
<tr>
<td>Shares outstanding</td>
<td>90.3 M</td>
</tr>
<tr>
<td>Market cap</td>
<td>$395.5 M</td>
</tr>
<tr>
<td>Cash & short-term investments</td>
<td>$141.9 M</td>
</tr>
<tr>
<td>Debt</td>
<td>0 M</td>
</tr>
</tbody>
</table>

1 December 6, 2017
2 September 30, 2017

3 Due from ApolloBio Corp: up to $50M in signing fee, milestone and equity investment, the latter two contingent upon corporate and regulatory approvals in process.
Investment Thesis: Inovio Positioned with Multiple Transformational Steps as an Immunotherapy Leader

Taking immunotherapy to the next level

Powerful technology platform with multiple cancer and infectious disease product candidates

Best-in-class data: phase 2b CD8 killer T cell/efficacy correlation published in The Lancet

Phase 3 & phase 2 pre-cancer studies including three P1/P2 immuno-oncology studies combining Inovio’s technology with checkpoint inhibitors

Validation: partners, publishing, grants

INO: NASDAQ
Appendix
Enhanced Cellular Delivery: Key Enabler of DNA Immunotherapies

- DNA plasmids must get through protective membrane into a cell to work
- Best method to enhance cellular uptake is electroporation
- SynCon® DNA plasmid and CELLECTRA® delivery device are phase 3 ready

CELLECTRA® 5PSP Device
CELLECTRA® 5PSP Electroporation Delivery Device

Drug

Array
Design + Delivery = Improved Immune Responses

Display of GFP gene expression after electroporation delivery into rabbit muscle

Immunized 3x with 15ug pNP responses @2 wk post Imm
Clinical Confirmation of Inovio Electroporation Benefit
HIV Antigen Response

- CD4 and CD8 intracellular cytokine staining (IFN-γ, IL-2) response associated with IL-12 and EP administration (2 clinical studies) with HIV gag, pol, env antigens/plasmids
- Dosing at 0, 4, 12 weeks
- Performed by independent HVTN Core Lab at University of Washington in NIH-sponsored trials

Responses to three doses of vaccine delivered with EP are greater than responses to four doses of vaccine delivered IM

† HVTN 080 (N = 48 total). Responses shown against global peptides post-third dose, based on evaluable responders.
‡ HVTN 070 (N = 120 total). Responses shown against global peptides post-third dose, based on evaluable responders.
Demonstrated Effect in Phase 2b Trial of VGX-3100

Placebo-Controlled, Randomized, Double Blind

- VGX-3100 SynCon® product for HPV-related pre-cancers
- Targets HPV 16/18 subtypes, E6/E7 oncogenes
- Females, age 18-55 (n=167)
- High-grade cervical dysplasia (CIN2/3); HSIL
- HPV 16 and/or 18 positive
- 3:1 randomization
- Dosing: month 0, 1, 3

Primary Endpoint
- Regression of CIN2/3 (HSIL) to CIN1 or normal (week 36)

Secondary Endpoint
- Regression of CIN2/3 to CIN1 or normal and clearance of HPV (week 36)
Phase 2b Achieves Primary and Secondary Endpoints

<table>
<thead>
<tr>
<th>Groups</th>
<th>Primary Endpoint</th>
<th>Secondary Endpoint</th>
<th>Primary – Post Hoc</th>
</tr>
</thead>
<tbody>
<tr>
<td>VGX-3100</td>
<td>Regression high grade to low grade cervical dysplasia or normal</td>
<td>Dysplasia regression to low or normal AND HPV clearance</td>
<td>40.2%</td>
</tr>
<tr>
<td>Control</td>
<td>49.5%</td>
<td>40.2%</td>
<td>40.2%</td>
</tr>
<tr>
<td>Difference</td>
<td>30.6%</td>
<td>14.3%</td>
<td>16.7%</td>
</tr>
<tr>
<td>P-value¹</td>
<td>p=0.017</td>
<td>p=0.001</td>
<td>p=0.006</td>
</tr>
</tbody>
</table>

- Efficacy correlates to immune responses
- PP and mITT p-values equal
- 167 subjects
- Paper published in *The Lancet* September 2015
- ¹Strata-adjusted
Inovio and ApolloBio Transaction: VGX-3100

• On February 13, 2017, Inovio entered into a Collaboration and License Agreement with ApolloBio Corporation
 • ApolloBio to receive exclusive rights to VGX-3100 within Greater China (China, Hong King, Macao, Taiwan)
 • Potential inclusion of The Republic of Korea within three years of the Effective Date
 • Inovio to receive upfront cash payment of $15M\(^{(1)}\)
 • Inovio to further receive up to $20M based upon achievement of VGX-3100 regulatory milestones (US, China, Korea), and double digit royalties on all net sales of VGX-3100 within the licensed territory

• Under a separate Stock Purchase Agreement, ApolloBio to purchase $35M\(^{(2)}\) of Inovio common stock
 • ApolloBio will pay $8.20 per share, which is based upon the 30 trading day volume weighted average price encompassing a period prior to and following FDA’s lifting of the VGX-3100 clinical hold
 • It is anticipated to close during the second half of 2017

• Both agreements are subject to closing conditions including the final approval of ApolloBio’s Board of Directors and shareholders, as well as regulatory and currency approvals required by The People’s Republic of China

\(^{(1)}\) $12M of the $15M was tied to the FDA’s lifting of the VGX-3100 Phase 3 pre-initiation clinical hold. The clinical hold was lifted on June 6\(^{th}\) 2017.

\(^{(2)}\) The amount may potentially be less than $35M, such that ApolloBio would not become the largest shareholder of Inovio.
First Partnership to Initiate Immuno-Oncology Strategy

AstraZeneca/MedImmune
(deal signed August 2015)

<table>
<thead>
<tr>
<th>Products</th>
<th>MEDI0457 (previously INO-3112)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HPV-driven cancer immunotherapy</td>
</tr>
<tr>
<td></td>
<td>+ 2 new R&D products</td>
</tr>
</tbody>
</table>

| Upfront Payment | $27.5 million |

| Development Costs | All development costs |

| Milestone Payments | $700 million |

| Royalties | Up to double digit tiered royalties on MEDI0457 + |
| | royalties for additional cancer vaccine products |

MedImmune intends to study MEDI0457 in combination with selected immuno-oncology molecules within its pipeline.
MEDI0457 Drives Antigen Specific CD8+ T Cells with Lytic Phenotype in Patient with HPV16/18 Head & Neck Cancer

- Lytic phenotype: patient PBMCs stimulated 120 hours \textit{in vitro} with antigen. No co-stimulation; no cytokine added at any time.

- Activation markers: CD38, CD69, CD137

- Lytic proteins: perforin, granzyme A, granzyme B, granulysin
Induction of CD8+ Activation, Lytic Protein Synthesis, and Humoral Immune Responses to HPV 16 and 18 in MEDI0457 Treated HNSCC Patient

HPV 16/18 Specific CD8+ T Cell Activation

8 of 9 patients show CD8+ responses to MEDI0457
Figure 1: Delivery of αCTLA-4 or αPD-1 post-1st vaccination synergizes with mTERT above checkpoint alone in generating anti-tumor immune response.
Emerging Infectious Disease Vaccine Opportunities

Rapid response technology platform desired by health authorities to fight emerging infectious diseases

- Inovio DNA vaccine platform demonstrates rapid design, manufacturing, and clinical development of products for emerging diseases

- **Commercialization drivers**
 - Grants, such as DARPA $45M Ebola award, Gates $8.8M, IVI grant for MERS
 - Priority review voucher potential
 - Stockpiling contracts: scale manufacturing

- **Coalition for Epidemic Preparedness Innovations (CEPI)**
 - “The coalition will also develop so-called platform technologies—experimental approaches to producing new vaccines that use **synthetic DNA** to kick-start an immune response.”
 - *MIT Technology Review*
 - Newly formed CEPI is largest-ever initiative to finance/develop new vaccines to address emerging infectious diseases
 - Initial $540M investment: Germany, Japan, Norway, Bill & Melinda Gates Foundation and Wellcome Trust
dMAb™ Products: Multiple Immune Mechanisms & Products

Inovio’s DNA-based monoclonal antibody products target:

<table>
<thead>
<tr>
<th>Cancers</th>
<th>Infectious Diseases</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Checkpoint Inhibitors (CI)</td>
<td>• Influenza A</td>
</tr>
<tr>
<td>• PD-1</td>
<td>• Influenza B</td>
</tr>
<tr>
<td>• PD-L1</td>
<td>• Pseudomonas</td>
</tr>
<tr>
<td>• 4 additional CIs</td>
<td>• MRSA/Staph</td>
</tr>
<tr>
<td>• Herceptin</td>
<td>• Ebola</td>
</tr>
<tr>
<td>• Anti-Tregs</td>
<td>• MERS</td>
</tr>
<tr>
<td>• Other anti-cancer pathways</td>
<td>• Dengue</td>
</tr>
<tr>
<td></td>
<td>• CHIKV</td>
</tr>
<tr>
<td></td>
<td>• Other infectious diseases</td>
</tr>
</tbody>
</table>

DARPA funded programs
Promising Preclinical dMAb Data

DARPA awards $57M to advance dMAb application and develop products for Ebola, influenza and antibiotic resistant bacteria.
Successful start of phase 3 studies

Immediate Release

CONTACTS:
Investors: Bernie Hertel, Inovio Pharmaceuticals, 858-410-3101, bhertel@inovio.com
Media: Jeff Richardson, Inovio Pharmaceuticals, 267-440-4211, jrichardson@inovio.com

Inovio Begins Phase 3 Clinical Trial of VGX-3100 for the Treatment of HPV-Related Cervical Pre-Cancer

FDA removes clinical hold on phase 3; Inovio to immediately begin recruiting subjects

PLYMOUTH MEETING, Pa. – June 8, 2017 – Inovio Pharmaceuticals, Inc. (NASDAQ: INO) today announced that it has commenced its phase 3 clinical program to evaluate the efficacy of Inovio’s DNA-based immunotherapy, VGX-3100, to treat cervical dysplasia caused by human papillomavirus (HPV). Inovio’s study will assess the efficacy of VGX-3100 in regressing cervical HSIL (high-grade
Expansion Into Brand New Facilities at Both SD and PHL to Support Next Phase of Growth

- Completed/Planned next wave of expansion – New device manufacturing facility in San Diego (~52,000 sq. ft). Build out and move in 07/17/2017; ~30,000 sq. ft additional space leased in Plymouth Mtg HQ.
- Consolidated operations by functional areas in San Diego (2 sites) and Plymouth Mtg
• Aug 2014: Total 86 [PM (36); SD (45); Contractors (2); Interns (3)]
• Aug 2015: Total 135 [PM (57); SD (64); Contractors (5); Interns (9)]
• Aug 2016: Total 214 [PM (83); SD (102); Contractors/Interns (29)]
• Jul 2017: Total 271 [PM (116); MR (83); WR (59); Contractors (13)]