The path to electrification

April 11, 2018
Forward-looking Statements

This presentation, as well as other statements made by Delphi Technologies PLC (the “Company”), contain forward-looking statements that reflect, when made, the Company’s current views with respect to current events, certain investments and acquisitions and financial performance. Such forward-looking statements are subject to many risks, uncertainties and factors relating to the Company’s operations and business environment, which may cause the actual results of the Company to be materially different from any future results. All statements that address future operating, financial or business performance or the Company’s strategies or expectations are forward-looking statements. Factors that could cause actual results to differ materially from these forward-looking statements are discussed under the captions “Risk Factors” and “Management’s Discussion and Analysis of Financial Condition and Results of Operations” in the Company’s filings with the Securities and Exchange Commission. New risks and uncertainties arise from time to time, and it is impossible for us to predict these events or how they may affect the Company. It should be remembered that the price of the ordinary shares and any income from them can go down as well as up. The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events and/or otherwise, except as may be required by law.
Delphi Technologies: Key partner for electrification

A leader in electrification

- **Deep engineering** know-how with a comprehensive portfolio of advanced propulsion solutions
- Advanced **software & systems** integration capabilities
- Differentiated power electronics offerings capturing **increasing content per vehicle (CPV)**
- **Industry-leading** technologies for future vehicle design

Comprehensive electronics portfolio for the challenges of today and tomorrow
Vehicle content and complexity driving future propulsion

<table>
<thead>
<tr>
<th>Year</th>
<th>US: 25 MPG</th>
<th>US: 34 MPG</th>
<th>US: 42 MPG</th>
<th>US: 54.5 MPG*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2015</td>
<td>US: 34 MPG</td>
<td>EU: 42 MPG</td>
<td>EU: 58 MPG</td>
<td>EU: 68 MPG</td>
</tr>
<tr>
<td>2020</td>
<td>US: 42 MPG</td>
<td>EU: 58 MPG</td>
<td>EU: 88 MPG</td>
<td>EU: 68 MPG</td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td>EU: 68 MPG (Proposed)</td>
</tr>
</tbody>
</table>

Increasing levels of electrification
Increasing levels of autonomy
Increasing levels of system integration
Increasing levels of connectivity

Assisted automation
Increasing personalization
Conditional automation
Smartphone integration
Safety eco-system
Full cloud connectivity
Fully autonomous
Internet of things

Convergence of megatrends driving increased electrification and systems

*Mid-term evaluation under review
Light-duty hybrids expected to grow

Annual electrified vehicles sold forecasted to increase in the next 10 years: ~37 m by 2025

Electrification mix unclear after 2023 as OEMs adjust to meet stringent regulatory targets

Source: IHS January 2018
China HQ for electrical & electronics, complementing global engineering capabilities

- Power electronic technical centers in all regions:
 - Shanghai and Suzhou, China
 - Bascharage, Luxembourg
 - Kokomo, IN, USA

- Expanding manufacturing capability:
 - Launching manufacturing, Suzhou, China
 - Established manufacturing, Kokomo, IN, USA
Path to electrification

Electrification solutions enhance vehicle performance and reduce CO₂

1. Total addressable content per vehicle market (TAM) for electrified vehicles
2. Low voltage content per vehicle based off average mid size sedan with no powertrain electrification or incremental content additions
3. ICE content per vehicle based off gasoline GDi, 2-step variable valvetrain internal combustion engine in 2023 and beyond
Power electronics electrification (CPV example)

Volvo XC90 T8 - PHEV
- Electrification CPV*: $2,200
- Inverter & DC/DC Converter (CIDD)
- Other power electronics content:
 - Inverter, On-Board Charger, Battery Management System, Hybrid Control Unit

Chevrolet Volt - PHEV
- Electrification CPV*: $1,800
- Dual Inverter
- Other power electronics content:
 - DC/DC Converter, On-Board Charger, Battery Management System, Hybrid Control Unit

Power electronics content requirements are increasing

CPV represents power electronics only
Portfolio: electronics and software

Broad range of electronic controls and software

- Gasoline engine controller
- Transmission controller
- Custom ASIC
- Propulsion domain controller
- Diesel engine controller
- Aftertreatment controller
- Motor controller
- 011001 100111 101100 Software

Full suite of power electronics

- Inverters
- DC-DC Converters
- Combined Inverter-Converter
- On-board Charger

Automotive grade electronic solutions – integral to current and future propulsion systems

$4B Lifetime bookings\(^1\) Through end of 2017
What is ‘energy’?

Energy

- Ability to “get things done”
- EV: Battery holds energy
 Kilowatt-hours (kWh)
- ICE: Fuel tank holds energy in the fuel (gallons)

EV = Electric Vehicle
ICE = Internal Combustion Engine
What is ‘energy’ and what is ‘power’?

Energy

- Ability to “get things done”
- **EV:** Battery holds energy
 - Kilowatt-hours (kWh)
- **ICE:** Fuel tank holds energy in the fuel

Power

- How fast “things get done”
- **EV:** Motor power in kilowatts
 - Typically 80 to 120 kilowatts
- **ICE:** Engine power in horsepower

EV = Electric Vehicle
ICE = Internal Combustion Engine
What does this mean to you and your car?

Energy gives Range

- **Energy** determines how far the car can go
- **ICE**: Size of the fuel tank and the amount of fuel in the tank
- **EV**: Size of the battery pack and the “state of charge”
What does this mean to you and your car?

<table>
<thead>
<tr>
<th>Energy gives Range</th>
<th>Power gives Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy determines how far the car can go</td>
<td>Power determines how quickly car can accelerate (“0-60” time)</td>
</tr>
<tr>
<td>ICE: Size of the fuel tank and the amount of fuel in the tank</td>
<td>A sports car will have an engine or electric motor with a higher power rating</td>
</tr>
<tr>
<td>EV: Size of the battery pack and the “state of charge”</td>
<td></td>
</tr>
</tbody>
</table>

Energy gives Range: The size of the battery pack and the “state of charge” affect how far your car can go. More energy means you can travel further. Power gives Acceleration: The power rating of your car’s engine or electric motor affects how quickly it can accelerate. A higher power rating means you can go from 0 to 60 mph faster.
Let’s build an electric vehicle
Let’s build an electric vehicle

Light switch to control the power?
Let’s build an electric vehicle

No, not a smooth drive
Let’s build an electric vehicle

Inverter enables smooth control of power to the e-motor
What is inside an inverter?

Three main components are necessary for e-motor operation:

- **Computer**
 - Includes Software
 - Custom integrated circuits

- **Capacitor**

- **(6) Big transistors**
The inverter: a complex electronics assembly

- TOP COVER
- CONTROL CIRCUIT BOARD
- CASTING
- TOP COOLING RAIL
- BOTTOM COOLING RAIL
- BUSBAR ASSEMBLY
- GATE DRIVE CIRCUIT BOARD
- POWER CIRCUIT BOARD
- CASTING
- CAPACITOR

Each circuit board has roughly 500 to 1,500 components to be integrated.

- Engineering intellectual property from silicon design to packaging
- Built-in inverter intelligence through software control
- Capabilities for extreme thermal management
- High manufacturing capability that supports complex packaging
Automotive grade

A necessity for power electronic reliability

Vibration
Multiple g-forces

Humidity
~90%

Lifetime
+10 years

Temperature
-40°C to 125°C

Salt, dust, dirt, fluids

Extreme requirements create a high barrier to entry
Delphi Technologies’ patented Viper power switch

- Large transistor and a diode
- Combined in a proprietary thermal package
- Wire bonds eliminated

“Viper” innovation enables effective inverter thermal management
(6) Viper switches with double-sided cooling

- Double-sided cooling: 2X better heat transfer
 - Less silicon -> lower cost
- Zero wire bonds – higher reliability
- Compact
- High performance, cost-effective
- Scalable & “future-proof”
Strong inverter value proposition

Engineering know-how

- IP on Viper power switch device with double-sided cooling
- Application packaging flexibility
- Technology path includes silicon carbide

Preferred power electronics supplier providing differentiated solutions

Displaced competitor’s inverter

Delphi Technologies inverter

> 30% smaller
> 40% lighter
> 25% higher power density
Our electronics portfolio enables an electric vehicle

Inverter converts DC energy from the battery into AC power to drive the motor
Summary

> Automotive electronics technology leader
> Software, controls & system integration expertise
> Key partner on the path to electrification

Driven to make a difference