Forward-looking statements

This presentation, as well as other statements made by Delphi Technologies PLC (the “Company”), contain forward-looking statements that reflect, when made, the Company’s current views with respect to current events, certain investments and acquisitions and financial performance. Such forward-looking statements are subject to many risks, uncertainties and factors relating to the Company’s operations and business environment, which may cause the actual results of the Company to be materially different from any future results.

All statements that address future operating, financial or business performance or the Company’s strategies or expectations are forward-looking statements. Factors that could cause actual results to differ materially from these forward-looking statements are discussed under the captions “Risk Factors” and “Management’s Discussion and Analysis of Financial Condition and Results of Operations” in the Company’s filings with the Securities and Exchange Commission. New risks and uncertainties arise from time to time, and it is impossible for us to predict these events or how they may affect the Company. It should be remembered that the price of the ordinary shares and any income from them can go down as well as up.

The Company disclaims any intention or obligation to update or revise any forward-looking statements, whether as a result of new information, future events and/or otherwise, except as may be required by law.
Strategy overview

Portfolio leadership in vehicle propulsion systems

Portfolio
- Internal combustion engine
- Software & Controls
- Electrification

Technology & Innovation
- Power electronics
- Fuel injection
- System solutions

Disciplined execution
- Launch performance
- Footprint optimization
- Operational excellence

Value creation
- Balanced growth
- Cash flow generation
- Capital allocation
Vehicle content and complexity driving future propulsion

<table>
<thead>
<tr>
<th>Year</th>
<th>US</th>
<th>EU</th>
<th>CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010</td>
<td>25 MPG</td>
<td>42 MPG</td>
<td>34 MPG</td>
</tr>
<tr>
<td>2015</td>
<td>34 MPG</td>
<td>58 MPG</td>
<td>47 MPG</td>
</tr>
<tr>
<td>2020</td>
<td>42 MPG</td>
<td>68 MPG (Proposed)</td>
<td>59 MPG (Proposed)</td>
</tr>
<tr>
<td>2025</td>
<td>54.5 MPG*</td>
<td>68 MPG (Proposed)</td>
<td>59 MPG (Proposed)</td>
</tr>
</tbody>
</table>

*Mid-term evaluation under review

Convergence of megatrends driving **increased electrification and systems**

- Assisted automation
- Increasing personalization
- Conditional automation
- Smartphone integration
- Safety eco-system
- Full cloud connectivity
- Fully autonomous
- Internet of things
Automotive content & complexity driving software demand

Computing Power

<table>
<thead>
<tr>
<th>Year</th>
<th>Memory (Megabytes)</th>
<th>Processing speeds (Megahertz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>0.3</td>
<td>25</td>
</tr>
<tr>
<td>2010</td>
<td>+900%</td>
<td>5X</td>
</tr>
<tr>
<td>2018</td>
<td>3</td>
<td>+230%</td>
</tr>
<tr>
<td>2003</td>
<td>+350%</td>
<td>10</td>
</tr>
<tr>
<td>2010</td>
<td>+200%</td>
<td>125</td>
</tr>
<tr>
<td>2018</td>
<td>100</td>
<td>900</td>
</tr>
</tbody>
</table>

Includes multi-core computing

System Complexity

<table>
<thead>
<tr>
<th>Year</th>
<th>ECU pin count</th>
<th>Software Apps</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1500</td>
<td>900</td>
</tr>
<tr>
<td>2010</td>
<td>+50%</td>
<td>1200</td>
</tr>
<tr>
<td>2018</td>
<td>+100%</td>
<td>1500</td>
</tr>
</tbody>
</table>

Engine control software code **doubles every 3 years; ~1 million lines** of code in today’s ECUs
Our electronics portfolio: Software-enabled

- Gasoline engine controller
- Transmission controller
- Motor controller
- Propulsion domain controller
- Diesel engine controller
- Aftertreatment controller
- Inverters
- DC-DC Converters
- Combined Inverter-Converter
- On-board Charger

Increasing complexity drives necessity for **advanced software & controls** for propulsion systems
Software and systems integration

Software Capabilities

MODULAR PROPULSION SOFTWARE PACKAGES
› Gas, light duty diesel, and commercial vehicles
› Proprietary electrification/hybrid strategies
› Compliant to emission regulations and safety levels

COMPONENT INTEGRATION INTO THE SYSTEM
› Aftertreatment (Selective Catalytic Reduction - SCR)
› Actuator control (Fuel Pump, Canister Purge)
› Sensors (Exhaust, Pressure, Temperature)

SCALABLE SOLUTIONS
› Basic functionality to turnkey

Complementing leading portfolio with robust integration and software capabilities
System integration example: 48V eDSF demonstration vehicle

15+% CO₂ REDUCTION
INCREASED LOW-END TORQUE
20%+ IMPROVED ACCELERATION (0-30 KPH)
INCREASED CHARGING DURING DECELERATION
SEAMLESS START-STOP PERFORMANCE

Realizing the system synergies of advanced propulsion technologies

eDSF: electrically-assisted Dynamic Skip Fire, a cylinder deactivation technology
Why does my car have software?

Since the 1980s, all major systems in a car have become computer-controlled.
Where is the computer in my car?

- Today’s car has many computers (50+ in a premium vehicle)
- Different configuration than home or office
- Computers ("silver boxes") are packaged out of sight
- Specifically designed to control vehicle functionality
 - Electronic Control Unit (ECU) for propulsion
- Automotive grade is essential

Future vehicle complexity is driving the need for enhanced controller computing power
Propulsion Software: Multiple layers for operation

- **Software**
 - Apps
 - Applications that perform a specific task
 - Operating System
 - Manages the running of the Apps on the microprocessor
 - Device Drivers
 - Talks to the integrated circuits in the hardware
 - ECU Hardware

Today’s ECU has ~1 million lines of software code
Delphi Technologies has an extensive library of applications

Most ECUs contain 50:50 Control versus Diagnostic apps

OEs may also integrate their own apps
ICE example: substantial quantity of apps required for complete system

VEHICLE

ON BOARD DIAGNOSTIC

AFTER TREATMENT

ENGINE

FUEL INJECTION

- Crank Angle Position
- Injection Control
- Rail Pressure Control
- Torque Structure
- Air Charge Control
- EGR Control
- DPF Control
- LNT Control
- SCR Control
- OBD II Monitors
- Diagnostic Manager
- Performance Ratio
- Fault Manager
- OBD II Monitors
- Diagnostic Manager
- Performance Ratio
- Fault Manager
- Inter-system Comm.
- Power Management
- Speed Control
- Air Conditioning
- Anti-Tamper

Same baseline software between *Passenger Car and Commercial Vehicle* platforms
Industry leading software development process

- Model-based design
- Software auto-coding
- Agile structure

Enables **flexible** and **fast-to-market** system solutions
Software is essential to electric propulsion…….

Driver presses pedal

Inverter with built-in ECU

Software Apps

Electric Motor Control

Electric Motor

Electricity

Position Sensor

…..and is based on internal combustion engine system design
A propulsion system needs “real-time control”

Precise alignment of waveforms

Inverter with built-in ECU

Position Sensor

Motor

Rotor spins inside the motor to propel the vehicle

Requires increasingly faster, more complex processing power
ECUs work together for propulsion control

Rest of the vehicle

Communication Network

Engine Controller

Transmission Controller
A hybrid electric vehicle requires additional ECUs…

….and a **propulsion domain controller** enhances system **intelligence**
Summary

Vehicle complexity and content is increasing

- Software & control is a critical element of advanced propulsion
- Systems integration capability is a necessity for optimum performance

More “intelligence” is required for future vehicles

- Increased computing power for real-time control
- Propulsion domain controllers for expanded functionality & connectivity

Delphi Technologies has differentiated engineering expertise

- A full library of Propulsion Apps for control & diagnostics
- System knowledge & capability for compliance and performance
- Global footprint to meet customer needs

Next teach-in: controllers, computing & connectivity
Q&A